On multi-Bernoulli approximations to the Bayes multi-target filter

نویسنده

  • B.-T. Vo
چکیده

Mahler recently proposed the Multitarget Multi-Bernoulli (MeMBer) recursion as a tractable approximation to the Bayes multi-target recursion, and outlined a Gaussian mixture solution under linear Gaussian assumptions. These proposals are speculative in the sense that, to date, no implementations have been reported. In this paper, it is shown analytically that the MeMBer recursion has a significant bias in cardinality that results in a high number of false tracks. A novel approximation that alleviates the bias problem is proposed. In addition, a sequential Monte Carlo implementation (for generic models) and a Gaussian mixture implementation (for linear Gaussian models) are given. Comparisons with Mahler’s original MeMBer filter via simulations show significant reduction of false tracks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid multi-Bernoulli CPHD filter for superpositional sensors

We propose, for the superpositional sensor scenario, a hybrid between the multi-Bernoulli filter and the cardinalized probability hypothesis density (CPHD) filter. We use a multi-Bernoulli random finite set (RFS) to model existing targets and we use an independent and identically distributed cluster (IIDC) RFS to model newborn targets and targets with low probability of existence. Our main cont...

متن کامل

Sensor Control for Multi-Object Tracking Using Labeled Multi-Bernoullie Filter

The recently developed labeled multi-Bernoulli (LMB) filter uses better approximations in its update step, compared to the unlabeled multi-Bernoulli filters, and more importantly, it provides us with not only the estimates for the number of targets and their states, but also with labels for existing tracks. This paper presents a novel sensor-control method to be used for optimal multi-target tr...

متن کامل

Bayesian Multiple Target Tracking

This thesis addresses several challenges in Bayesian target tracking, particularly for array signal processing applications, and for multiple targets. The optimal method for multiple target tracking is the Bayes’ joint filter that operates by hypothesising all the targets collectively using a joint state. As a consequence, the computational complexity of the filter increases rapidly with the nu...

متن کامل

An Overview of Particle Methods for Random Finite Set Models

This overview paper describes the particle methods developed for the implementation of the a class of Bayes filters formulated using the random finite set formalism. It is primarily intended for the readership already familiar with the particle methods in the context of the standard Bayes filter. The focus in on the Bernoulli particle filter, the probability hypothesis density (PHD) particle fi...

متن کامل

"Statistics 102" for Multisource-Multitarget Detection and Tracking

This tutorial paper summarizes the motivations, concepts and techniques of finite-set statistics (FISST), a systemlevel, “top-down,” direct generalization of ordinary single-sensor, single-target engineering statistics to the realm of multisensor, multitarget detection and tracking. Finite-set statistics provides powerful new conceptual and computational methods for dealing with multisensor-mul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007